Control of redox transitions and oxygen species binding in Mn centers by biologically significant ligands; model studies with [Mn]-bacteriochlorophyll a.

نویسندگان

  • Idan Ashur
  • Alex Brandis
  • Moshe Greenwald
  • Yahel Vakrat-Haglili
  • Varda Rosenbach-Belkin
  • Hugo Scheer
  • Avigdor Scherz
چکیده

Mn-superoxide dismutase (Mn-SOD), which protects the cell from the toxic potential of superoxide radicals (O(2)(-*)), is the only type of SOD which resides in eukaryotic mitochondria. Up-to-date, the exact catalytic mechanism of the enzyme and the relationship between substrate moieties and the ligands within the active site microenvironment are still not resolved. Here, we set out to explore the possible involvement of hydroperoxyl radicals ((*)OOH) in the catalytic dismutaion by following the interplay of Mn(III)/Mn(II) redox transitions, ligands binding, and evolution or consumption of superoxide radical, using a new model system. The model system encompassed an Mn atom chelated by a bacteriochlorophyll allomer macrocycle (BChl) in aerated aprotic media that contain residual water. The redox states of the Mn ion were monitored by the Q(y) electronic transitions at 774 and 825 nm for [Mn(II)]- and [Mn(III)]-BChl, respectively (Geskes, C.; Hartwich, G.; Scheer, H.; Mantele, W.; Heinze, J. J. Am. Chem. Soc. 1995, 117, 7776) and confirmed by electron spin resonance spectroscopy. Evolution of (*)OOH radicals was monitored by the ESR spin-trap technique using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). The experimental data suggest that the [Mn]-BChl forms a (HO(-))[Mn(III)]-BChl(OOH) complex upon solvation. Spectrophotometeric titrations with tetrabutylamonnium acetate (TBAA) and 1-methylimidazole (1-MeIm) together with ESI-MS measurements indicated the formation of a 1:1 complex with [Mn]-BChl for both ligands. The coordination of ligands at low concentrations to [Mn(III)]-BChl induced a release of a (*)OOH radical and a [Mn(III)]-BChl --> [Mn(II)]-BChl transition at higher concentrations. The estimated equilibrium constants for the total redox reaction ( )()are 1.9 x 10(4) +/- 1 x 10(3) M(-)(1) and 12.3 +/- 0.6 M(-)(1) for TBAA and 1-MeIm, respectively. The profound difference between the equilibrium constants agrees with the suggested key role of the ligand's basicity in the process. A direct interaction of superoxide radicals with [Mn(III)]-BChl in a KO(2) acetonitrile (AN) solution also resulted in [Mn(III)]-BChl --> [Mn(II)]-BChl transition. Cumulatively, our data show that the Mn(III) center encourages the protonation of the O(2)(-)(*) radical in an aprotic environment containing residual water molecules, while promoting its oxidation in the presence of basic ligands. Similar coordination and stabilization of the (*)OOH radical by the Mn center may be key steps in the enzymatic dismutation of superoxide radicals by Mn-SOD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of Proton Coupled Electron Transfer in a Biomimetic Dimanganese Water Oxidation Catalyst with Terminal Water Ligands.

The oxomanganese complex [H(2)O(terpy)Mn(III)(μ-O)(2)Mn(IV)(terpy)H(2)O](3+) (1, terpy = 2,2':6-2″-terpyridine) is a biomimetic model of the oxygen evolving complex of photosystem II with terminal water ligands. When bound to TiO(2) surfaces, 1 is activated by primary oxidants (e.g., Ce(4+)(aq), or oxone in acetate buffers) to catalyze the oxidation of water yielding O(2) evolution [G. Li et al...

متن کامل

A mononuclear non-heme manganese(IV)-oxo complex binding redox-inactive metal ions.

Redox-inactive metal ions play pivotal roles in regulating the reactivities of high-valent metal-oxo species in a variety of enzymatic and chemical reactions. A mononuclear non-heme Mn(IV)-oxo complex bearing a pentadentate N5 ligand has been synthesized and used in the synthesis of a Mn(IV)-oxo complex binding scandium ions. The Mn(IV)-oxo complexes were characterized with various spectroscopi...

متن کامل

Characterization of proton coupled electron transfer in a biomimetic oxomanganese complex: Evaluation of the DFT B3LYP level of theory.

The capabilities and limitations of the Becke-3-Lee-Yang-Parr (B3LYP) density functional theory (DFT) for modeling proton coupled electron transfer (PCET) in the mixed-valence oxomanganese complex 1 [(bpy)(2)Mn(III)(mu-O)(2)Mn(IV)(bpy)(2)](3+) (bpy = 2,2'-bipyridyl) are analyzed. Complex 1 serves as a prototypical synthetic model for studies of redox processes analogous to those responsible for...

متن کامل

Comparative modelling of 3D-structure of Geobacter sp. M21 (a metal reducing bacteria) Mn-Fe superoxide dismutase and its binding properties with bisphenol-A, aminotriazole and ethylene-diurea

Superoxide dismutase play important roles in iron-respiratory bacteria such as Geobacteraceae as an antioxidant defense, and probably an effective enzyme of electron transfer network. Regarding the application of iron-respiratory bacteria in environmental biotechnology particularly biodegradation and bioremediation, understanding the mechanism of inhibition/induction of superoxide dismutase by ...

متن کامل

High-spin Mn-oxo complexes and their relevance to the oxygen-evolving complex within photosystem II.

The structural and electronic properties of a series of manganese complexes with terminal oxido ligands are described. The complexes span three different oxidation states at the manganese center (III-V), have similar molecular structures, and contain intramolecular hydrogen-bonding networks surrounding the Mn-oxo unit. Structural studies using X-ray absorption methods indicated that each comple...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 125 29  شماره 

صفحات  -

تاریخ انتشار 2003